Femtosecond lattice and spin dynamics in topological phase-change materials

Muneaki Hase1,2
1Division of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan,
2CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
E-mail address: mhase@bk.tsukuba.ac.jp

ABSTRACT
Now, phase-change materials (PCMs) stand at a turning point, at which new physical effects, such as topological properties, have been introduced theoretically and experimentally. In addition, > 1 GHz memory operation has been demonstrated at telecommunication wavelengths, making PCMs broader interests in new research fields. Here, I overview recent experimental results on femtosecond lattice and spin dynamics of phase-change materials far from equilibrium, based on time-resolved reflectivity and time-resolved magneto-optical Kerr-rotation techniques. These results are mainly observed in interfacial phase-change memory (iPCM) structures, in which GeTe and Sb2Te3 layers are designed to be separated. All results are compared with those obtained in conventional Ge2Sb2Te5 alloys. Thus, we will provide a possible new step to ultrafast optical and spin switching devices, which can be operated at > 1 THz frequency range.

Key words: Phase-change material, Coherent Phonon, Femtosecond, Spin.

1. INTRODUCTION
Ultrafast lattice and spin dynamics are fundamental physical phenomena [1-3], which would determine the switching speed of phase-change materials, such as Ge2Sb2Te5 (GST225). Investigating spin dynamics, in particular, would open new technological fields for spin devices based on phase-change materials [4,5]. However, little is know about lattice and spin dynamics at ultrafast time region, less than picoseconds. Interfacial phase-change memory (iPCM) is one of the best candidates for realizing ultrafast lattice and spin switching, based on possible dominant atomic rearrangement around Ge atoms near the interfaces [6-8]. As a ultrafast spectroscopic technique, coherent phonon spectroscopy (CPS) is a powerful tool for exploring non-equilibrium lattice dynamics [9-14], while time-resolved magneto-optical Kerr-rotation (MOKE) technique, is useful for monitoring transient spin excitation and relaxation [2,15]. Here we discuss femtosecond structural transformation of iPCM films far from equilibrium monitored by coherent phonon spectroscopy under high-density electronic excitation. We also demonstrate that transient magnetization (< 1 ps) by femtosecond laser pulse is possible to occur in iPCM structure as well as in conventional GST225 alloys.

2. EXPERIMENTS
The sample used were Ge2Sb2Te5 (GST225) alloy film and iPCM thin films, the later of which consist of the alternation of GeTe and Sb2Te3 (or Ge-Sb-Te) layers on Si (100) substrate grown by using a helicon-wave RF magnetron–sputtering. GST225 alloy films were deposited on Si (100) substrate as a reference sample. To measure time-resolved reflectivity change of the sample as a function of the time delay, 40 fs-width optical pulses (a central wavelength of 800 nm) from a Ti:sapphire regenerative amplifier system (100 kHz repetition rate) were utilized. A pair of the pump-pulses was generated
through a Michelson-type interferometer, in which the separation time (Δt) of the double pump-pulses was precisely controlled by moving one arm of the mirrors. To explore ultrafast spin dynamics in iPCM and GST225 thin films, on the other hand, we carried out the pump-probe Kerr-rotation spectroscopy with femtosecond pulse laser, whose pulse width of 20 fs and a central wavelength of 830 nm at 80 MHz repetition rate. By rotating the quarter-wave plate inserted on the pump beam pass, the polarization of the pump pulse was varied between the linear s-polarized and circular-polarized states, so that one can selectively excite coherent spin via nonlinear magneto-optical effects. All the measurements were carried out at room temperature.

3. RESULTS & DISCUSSION

Figure 1 shows the results of coherent phonon spectroscopy for the SET phase of iPCM film under high-density electronic excitation with a characteristic separation time of $\Delta t = 290$ fs. The coherent phonon oscillation could be enhanced by the second pump-pulse (P_2), after that strongly damped oscillation was monitored, as highlighted by the rectangle region (Fig. 1a). The Fourier transformed (FT) spectra in the excited state shows an appearance of double peak structure (Fig. 1b), demonstrating ultrafast local lattice modification of iPCM. The observation of the double-peak FT spectra can be interpreted to two local structures, possibly three-fold and four-fold Ge atomic coordinations [8, 16, 17]. The ultrafast phase transformation, observed within one picosecond, suggests this process is triggered by electronic excitation. Such a non-thermal nature of the phase transformation has also been demonstrated in GST225 and related phase-change materials by using time-resolved x-ray or electron diffraction measurements by several different groups [18-21]. Note that our observation of the femtosecond to picosecond local lattice dynamics is observed under the condition that the state goes back to the original SET phase, which is different from those observed by the irradiation with femtosecond laser pulses above the threshold [18, 20]. The total pump fluence more than 17.5 mJ/cm2, however, was required to induce the double-peak FT spectra for the SET phase of iPCM, implying the observed structure would be an intermediate state.
We have constructed the time-resolved pump-probe Kerr-rotation spectroscopy system and measured the spin dynamics in GaAs wafer for the system’s checking purpose, as shown in Fig. 2. Here, the left-handed circular polarized pump light induces the positive MOKE signal, while the right-handed circular polarized pump shows the negative MOKE signal, indicating they originate from the inverse Faraday effect (IFE) [2, 22], where high-intensity laser irradiation induces a static magnetization $M(0)$,

$$M(0; \omega, -\omega) = \frac{\chi}{16\pi} \left[E(\omega) \times E'(\omega) \right], \quad (1)$$

where ω denotes optical frequency, χ is the magneto-optical susceptibility, E is the electric field of the laser pulse. The induced magnetization M in Eq. (1) has generally zero frequency because of optical rectification, but in reality, it has non-zero frequency components, since the ultrashort laser pulse has broad spectra; the shorter the pulse width, the broader the spectral width. As expected from the selection rule of the IFE, the linear s-polarized pump light did not generate the MOKE signal in Fig. 2. However, this is not the case for the phase-change materials, like iPCM films, in which linear s-polarized pump light could even induce the magnetization [23]. By rotating the quarter waveplate from 0 to 360 degrees, we could map the Kerr rotation signal as a function of the polarization state, from which it was possible to compare the spin dynamics in iPCM with those in conventional GST225 alloy films.

4. CONCLUSION

We have observed femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons under high-density electronic excitation. We have also
mention the results on ultrafast spin dynamics observed in iPCM films as well as in conventional
GST225 alloy films.

ACKNOWLEDGMENTS

I would like to thank potential collaborations with Dr. Junji Tominaga and Dr. Yuta Saito of National
Institute of Advanced Industrial Science and Technology (AIST), Japan, who fabricated the samples,
and with Dr. Paul Fons and Dr. Alexander V. Kolobov of AIST for useful discussions. I thank also Dr.
Richarj Mondal and Mr. Yuki Aihara of the group at University of Tsukuba, who conducted the
pump-probe Kerr-rotation measurements and analysis. This work was supported by CREST-JST, Japan.

REFERENCES

 (2012).
 232101 (2012).
 151902 (2014).
 118, 10248 (2014).
Biographies

Muneaki Hase, Associate Professor, Dr. Eng.
Division of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan

Academic Career
1998 Ph.D. in Applied Physics, Osaka University, Osaka, Japan
1998-1999 Postdoctoral Fellow, Japan Society for the Promotion of Science (JSPS)
1999-2004 Research Scientist, National Research Institute for Metals (NRIM)
2004-2006 Senior Staff Scientist, National Institute for Materials Science (NIMS)
2006- Associate Professor, Division of Applied Physics, University of Tsukuba, Japan